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Abstract 

We present a study on tracer diffusion of short poly(ethylene oxide) (PEO) tracers in a strongly 

entangled PEO melt. We find that within the entanglement volume, the dynamics of the 

entanglement strands is significantly Non-Gaussian. Following theoretical predictions of 

Guenza (M. Guenza, Phys. Rev. E, 89 (5) 052603 (2014)) we quantify the Non-Gaussian 

correction 𝛼!(𝑡) in terms of a logarithmic Gaussian function with a maximum at a time in the 

order of the Rouse times of the different tracers and a width that is independent of the tracer’s 

length. The strength of the Non-Gaussian correction is found to be equal for all tracers 

providing another proof that the tracers mirror the host dynamics, which needs to be 
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independent of the tracer length. As for polyethylene (M. Zamponi et al., Phys. Rev. Lett. , 126 

(18), 187801 (2021)), independent of their molecular weight, the tracer’s center-of-mass 

mean square displacements are sub-diffusive at short times until they have reached the size 

of the reptation tube 𝑑; then, a crossover to Fickian diffusion takes place indicating 

cooperative chain motion within the entanglement volume 𝑑". Thus, the host dynamics within 

the tube is not only cooperative but also significantly Non-Gaussian.  

 

Introduction 

The research on Non-Gaussian (NG) dynamics in polymer melts has been largely focused on 

the decaging of polymer segments near the glass transition, where the deviations from a 

Gaussian displacement distribution was quantified in terms of the NG Parameter 𝛼!(𝑡)1 

  𝛼!(𝑡) =
"#[%!('))%!(*)]",
-⟨[%!('))%!(*)]#⟩#

− 1     (1) 

𝑟0(𝑡) denotes the position of segment “𝑖” at time 𝑡. For Gaussian distributed displacements 

𝛼!(𝑡) = 0. The decaging process relates to the 𝛼-relaxation and exhibits a maximum near 𝜏1. 

Both extensive simulations 2–6 and experimental studies combined with simulations 7,8 were 

reported. The characteristic time 𝜏2#  for 𝛼!(𝑡) was found to relate non-linearly to 𝜏2:  

𝜏2#~	𝜏2
≅*.5  9–11. 

On the chain level, assuming monomer motion unperturbed by its neighbors, the dynamics of 

non-entangled shorter chains is commonly described by the Rouse model, where segmental 

friction and entropic forces drive the dynamics 12. By molecular dynamics simulations in 

combination with neutron spin echo (NSE) observations on unentangled chains shortcomings 

of the Rouse model were related to intermolecular interactions 13. From simulations Smith et 

al. 14  found that the monomer displacements are not distributed in a Gaussian fashion leading 

to a positive 𝛼!(𝑡). According to Smith’s work and a significant amount of other simulation 

studies the NG behavior is accompanied by sub-diffusion of the non or very weakly entangled 

chains. In these short chain melts the cross over from sub-diffusivity to Fickian diffusion occurs 
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at about the Rouse time of the respective melt 14–21. Based on NSE-experiments also Zamponi 

et al. 13 reported such behavior and could quantitatively describe these results in terms of 

generalized Langevin approach proposed by Guenza 22–26. 

 Equ. 2 describes the dynamic structure factor as a function of segment displacement ⟨𝑟!(𝑡)⟩ 

including the NGP 𝛼!(𝑡). As is evident, a positive 𝛼!(𝑡)	restricts the decay of 𝑆(𝑄, 𝑡) relative 

to that of Gaussian distributed segment displacements at the same mean squared 

displacement (MSD).  

 𝑆(𝑄, 𝑡) = 𝑒𝑥𝑝 9−𝑄! #%
#('),
6

+ 𝑄7𝛼!(𝑡)
#%#('),

#

5!
;      (2) 

 

For such chains Pan and Sun 4 have studied NG behavior by MD-simulations on coarse grained 

melts including chain stiffness effects. The evaluated 𝛼!(𝑡) display two maxima, a stronger 

one around the monomer decaging process and a second one in the Rouse like sub-diffusive 

regime that increases in strength with increasing chain stiffness. Hints for such weak Non-

Gaussianities in the Rouse regime were already reported by M. Aichele et al. 9 who found 

some remaining Non-Gaussianity at the long time flank of 𝛼!(𝑡). 

 

So far, these investigations into NG dynamics addressed non or weakly entangled polymer 

melts. Recently, based on simulations, Guenza investigated the NG behavior of entangled 

linear polymer melts 27. For polyethylene (PE) she derived a function 𝛼!(𝑡) with the following 

features: (i) The dynamics is NG up to about the terminal times 𝜏8  or 𝜏9  for Rouse chains or 

entangled melts respectively; (ii) At a time that is smaller but proportional to the terminal time 

(𝑡 ≲ 𝜏8) 𝛼!(𝑡) exhibits a maximum; (iii) Its magnitude on the scale of the monomer depends 

on the chain length 𝑁 as √𝑁; (iv) Finally, the characteristic length scale of the dynamic 

heterogeneities is in the order of 𝑅:, the size of the molecule. 
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Very recently, in order to sense the host dynamics on the level of the tube diameter 𝑑 28, we 

studied the dynamics of strongly entangled PE melts using a series of short non- or weakly 

entangled tracer PE-molecules. The chain motion was found to be caged within the 

entanglement volume 	𝑑" rather than exhibiting unrestricted Rouse like chain relaxation as 

commonly supposed 12. Also, compared to the Rouse prediction the amplitudes of the tracer’s 

internal motion appeared to be significantly reduced. The origin of this behavior was related 

to the cooperativity of the tracer and host chains due to important interchain couplings. We 

note that the cooperativity of the tracer and long chain motion was observed to be restricted 

to the entanglement volume, beyond which the tracers performed Fickian diffusion. 

 

In this work we present a study of poly(ethylene oxide) (PEO) tracer dynamics in strongly 

entangled PEO hosts. We address two aspects: 1. the transition of the diffusion from sublinear 

to Fickian at a MSD related to the tube diameter and 2. the Non-Gaussianity of the tracer 

Rouse dynamics. The modification of the Rouse dynamics is needed to consolidate the 

observed dynamic scattering with the model description of the tracer scattering function. In 

particular this is visible for the longer tracers. Motivated by the results of Guenza 27  in this 

paper we used her Ansatz for Non-Gaussianity for the tracer dynamics, which has a realistic 

physical background. We show that within the entanglement volume as in PE the melt 

dynamics is cooperative and in addition NG causing the apparent mode suppression. Thus, 

following Guenza cooperativity and Non-Gaussianity are the two sides of the same coin27. As 

tracers mirror the host dynamics, we demonstrate that cooperativity and Non-Gaussianity 

within the entanglement volume is not special to PE but appears to be a generic feature of 

strongly entangled polymer melts. 
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Theory 

Non-Gaussian dynamics. The focus of this work is on the NG entanglement strand motion in 

strongly entangled polymer melts. Since short tracer chains move cooperatively with the host 

and mirror its dynamics (see Ref. [28] and PEO results presented later), here we use such 

tracers, in order to clarify the amount of Non-Gaussianity within the entanglement volume. 

Within this work we always deal with the chain dynamic structure factor, that is observed from 

labelled (hydrogenated) chains in a deuterated environment, and for simplicity name it 

“dynamic structure factor	𝑆(𝑄, 𝑡)”. In 𝑆(𝑄, 𝑡) the effect of NG displacement distributions in a 

first approximation shows up in the form of a NG correction as displayed in Equ. 2. While the 

interchain interaction and its consequences on the chain dynamics were treated theoretically 

by several authors, in particular by the Farago et al. 29, Guenza provided a treatable result for 

the dynamic structure factor of strongly entangled chains. Following her work, we describe 

the NG distribution of segmental motion in terms of 𝑆(𝑄, 𝑡) as follows 27: 

𝑆(𝑄, 𝑡) ≅ ;
<
𝑒𝑥𝑝	[−𝑄! ⟨𝑟=>?! (𝑡)⟩ 6⁄ ]∑ 𝑒𝑥𝑝 F− G@

#

6
H 𝑓(𝑄!) JK𝑟0(𝑡) − 𝑟A(0)L

!MN<
0,A       (3) 

 

with  

 𝑓(𝑄!) = 1 − 𝑄!𝛼!(𝑡)⟨[𝑟(𝑡) − 𝑟(0)]!⟩/12                                      (4) 

 

 ⟨[𝑟(𝑡) − 𝑟(0)]!⟩ relates to the segment mean square displacement. For a Rouse chain we 

have 30 

⟨[𝑟(𝑡) − 𝑟(0)]!⟩ = ;
<
7<C$%&#

D#
∑ ;

E#
<
?,EF; 𝑐𝑜𝑠 GED?

<
H
!
F1 − 𝑒𝑥𝑝 R−2𝑊 U1 − 𝑐𝑜𝑠 GED

<
HV 𝑡WN    (5a) 
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 JK𝑟0(𝑡) − 𝑟A(0)L
!M = 6𝐷(𝑡)𝑡 + |𝑖 − 𝑗|𝑙GH:! + 

+ 7<C$%&#

D#
∑ ;

E#
<
EF; 𝑐𝑜𝑠 GEDA

<
H 𝑐𝑜𝑠 GED0

<
H F1 − 𝑒𝑥𝑝 G'E

#

I'
HN                (5b) 

 

where 𝑊 is the Rouse rate and 𝑙GH: the segment length. We note that a proper theory would 

need to generalize the Rouse equations for interchain interactions involving e.g. a memory 

function formalism 31 . This, however, is well beyond this experimental work.  

 

The center-of-mass mean squared displacement ⟨𝑟=>?! (𝑡)⟩ was taken as a sequence of two 

power laws 〈[𝑟=>?! (𝑡) − 𝑟=>?! (0)]!〉~𝑡J  for ⟨𝑟=>?! (𝑡)⟩ ≤ ⟨𝑟=%>GG! ⟩ and 〈𝑟=>?! (𝑡)〉~𝑡 for larger 

MSD, where ⟨𝑟=%>GG! ⟩ describes the cross over from sub-diffusivity to Fickian diffusion.   

𝑒𝑥𝑝	[−𝑄! ⟨𝑟"#$! (𝑡)⟩ 6⁄ ] = 𝑒𝑥𝑝

⎝

⎜
⎛
− %!

&
56𝑒

'()*+ &⁄
"#$#%&&! '

()#
-.
⟨𝑟"/#00! ⟩𝑡.7

1

+ (6𝐷2/𝑡)1:

+ 1⁄

⎠

⎟
⎞

 (6) 

with 𝑎 = 8 controlling the sharpness of the transition from sublinear (exponent 𝛽 ≃

0.7⋯0.8) to linear diffusion with constant 𝐷'%  at MSD ⟨𝑟=%>GG! ⟩. 

 

What remains is to find an expression for 𝛼!(𝑡). Following the results of Guenza we use a 

logarithmic Gaussian function 

   𝛼!(𝑡) = 𝛼*𝑒𝑥𝑝 F− Re𝑙𝑛(𝑡) − 𝑙𝑛(𝑡?1K)g
! 2⁄ 𝜎!WN     (7) 

at 𝑡?1K  :  𝛼!(𝑡?1K) = 𝛼*; 	𝑡?1K, thereby, is proportional to the Rouse times of the different 

tracers, respectively. In the scattering function a positive 𝛼!(𝑡) reduces the apparent Rouse 

mode contributions in 𝑆(𝑄, 𝑡).  Thus, NG dynamics might also be behind the weak Rouse 
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contribution to 𝑆(𝑄, 𝑡)	for the tracer dynamics in PE melts 28 and could offer an understanding, 

why such strongly reduced Rouse contributions to the tracer dynamic structure factors were 

found.  

 

Non interacting dynamic multi-component RPA. In a blend of short and long chains the 

random phase approximation (RPA) corrections are not only necessary to describe the static 

structure factor, but even more important for modelling the dynamics of short chains in the 

presence of long chains. The dynamic structure factor of the short chains contains 

contributions from the slow long chain dynamics that needs to be corrected for.  Akcasu and 

Tombakoglu derived expressions for the dynamic scattering function of a multicomponent 

(𝑛 + 1) polymer system in the framework of the RPA32. The result is given in form of Laplace 

transforms:  

         𝑺(𝑄, 𝑠) = [𝟏𝑠 + 𝑄!𝑫(𝑄, 𝑠)]);𝑺(𝑄)                    (8) 

where 𝑺(𝑄, 𝑠) is the Laplace transformed scattering function, 1 the unity matrix and 𝑫(𝑄, 𝑠) 

a generalized diffusion matrix. Applying the contrast vector to the 2-dimensional scattering 

function matrix yields the observable intensity.  The technical difficulty to apply this in 

practical evaluation schemes is the realization of the required Laplace transformations of the 

undisturbed functions and the back transformation of the results, to the time domain. In Ref. 

[33] we elaborated a practical scheme to perform this task including a software 

implementation33. In that work we also undertook a successful quantitative test of the 

procedure. The evaluation and fits in the present work are based on this procedure. They were 

also used and illustrated in the previous work on PE 28. Finally, we note that the application of 

RPA corrections is merely a technical means to correct the scattering function for admixtures 

of the long chain scattering signal to the observed 𝑆(𝑄, 𝑡) in the present contrast. It is 
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unavoidable that with finite concentration of the labelled component also the non-labeled 

(matrix) chains gain some visibility. This effect is well known for the static RPA corrections and 

appears to be even more important for systems of components with strongly asymmetric 

dynamics. In the dynamic scattering function 𝑆(𝑄, 𝑡)  a prominent feature of this admixture is 

a residual slowly decaying leveling at large t, where the scattering function of the short tracers 

has largely decayed already. This can clearly be seen directly (see Figures 1a,b and Figure S1) 

in the NSE data. 

 

Experiment 

 

Synthesis. The low molecular weight hydrogenous samples with 𝑀L values of 1.00, 2.11, 3.16, 

and 4.53 kg/mol were obtained from Sigma-Aldrich and used as received. The high molecular 

weight hydrogenous and deuterated PEO samples were synthesized as described in Ref. [34], 

except that for the hydrogenous polymer potassium metalated PEO2K and for the deuterated 

polymer potassium tert-butoxide were used as initiators 34. The potassium metalated PEO2K 

was synthesized from PEO2K and 1.9-Eq. of potassium tert-butoxide in dry toluene at 60°C. 

After mixing the ingredients inside a glove box, the solvent and the tert-butanol formed were 

removed under high vacuum conditions. Deuterated ethylene oxide was obtained from 

Cambridge Isotope Laboratories (isotopic purity 98%) and purified as described in Ref. [34]. 

𝑀M 	and 𝑀M distributions were measured by SEC/LS, except for the low molecular weight 

hydrogenous samples, where 𝑀L values were determined by 1H-NMR in deuterated pyridine 

(see Ref. [34]) and 𝑀M 𝑀L⁄  values were measured by conventional SEC calibrated with PEO 

standards. The polydispersities are displayed in Table 1. The molecular weight of the long 

chain PEO matrix was 42.9 kg/mol with 𝑀M 𝑀L = 1.01⁄ . Each sample contained 5% 
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hydrogenous tracer molecules in the deuterated PEO matrix. The sample characteristics are 

given in Table 1. Furthermore, hydrogenous long chains (42.8 kg/mol 𝑀M 𝑀L⁄ =1.01) were 

synthesized. 

Table 1: Molecular weight 𝑀L; number of monomers 𝑁; polydispersity 𝑀M 𝑀L⁄ ,; the number 
of entanglement 𝑍= 𝑀L 𝑀H⁄  with 𝑀H=2.1 kg/mol the entanglement molecular weight 35 and 
the calculated radii of gyration for the different tracers 𝑅:! = 𝑙GH:! 𝑁/6 with 𝑙GH: = 0.568	𝑛𝑚 
36 
 

Sample 𝑀L   
[kg/mol] 

𝑁 𝑀M 𝑀L⁄  𝑀L 𝑀H⁄  Rg 
[nm] 

PEO1K 1.00  23 1.04 0.48 1.11 
PEO2K 2.11  48 1.04 1.0 1.60 
PEO3K 3.16  71 1.07 1.5 1.95 
PEO4K 4.53  103 1.03 2.2 2.35 

 

Methods. Applying neutron wavelengths of 𝜆=1.0 and 1.35 nm the experiments were 

performed using the IN15 neutron spin echo (NSE) instrument at the Institut Laue-Langevin 

(ILL) in Grenoble. At 𝑇=413 K, spanning a time range 0.3 ns ≤ 𝑡 ≤ 500 ns, we covered a range 

of momentum transfers 0.5 nm-1 ≤ 𝑄 ≤ 1.2 nm-1. For the PEO4K tracer also the dynamics at 

T=464 K was studied. The experimental results were corrected for background and resolution. 

For a short chain in a long entangled slowly moving matrix also the slow dynamics indirectly 

contributes to the observed spectra. In order to perform the necessary dynamic RPA 

corrections, the pure long chain matrix containing 5% hydrogenous chains was also 

investigated at 413 and 464 K and fitted with an interpolation function as described in Ref. 

[33]. Finally, to investigate, whether the NSE determined Fickian diffusion coefficients agree 

with macroscopic diffusion, we also undertook PFG-NMR measurements on the PEO2K, PEO3K 

and PEO4K samples † that were studied before with neutrons (see SI).  

 

 
† The PEO1K sample was not available for PFG NMR measurements. 
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Experimental results 

 

We have studied the molecular weight-dependent dynamic structure factors from hydrogen-

labelled PEO tracer chains in a deuterated high molecular weight PEO melt. The investigation 

was performed on samples with altogether 4 different tracer molecular weights (see Table 1). 

Figure 1 displays the measured NSE spectra for all tracers in the deuterated PEO matrix at 

413K. 
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Figure 1: NSE spectra from all tracers: PEO1K (a), PEO2K (b), PEO3K (c), PEO4K (d) tracers in 
the deuterated PEO matrix; 𝑄-values from above 0.5 nm-1 (black); 0.8 nm-1 (red) and 1.2 nm-

1 (blue). The lines display the result of the joint fit of all spectra (see text). 
 

The spectra displayed in Figure 1 result from a combination of center-of-mass mean squared 

displacements ⟨𝑟=>?! (𝑡)⟩, Rouse mode contributions and contributions from the host dynamics 

via dynamic RPA.  

 

NG-behavior is governed by the 𝛼!(t) function (Equ. 7) containing 3 parameters: its magnitude 

𝛼*, the position of its maximum 𝑡?1K~𝜏8  and its width 𝜎. For the segment MSD (Equ. 5a) as 

well as the Rouse contribution (Equ. 5b) all parameters are known 37. We fitted all spectra with 

the scattering function of Equ. 3 combining the contributions from the Rouse motion, the Non-

Gaussianity and the corrections for dynamic RPA.  

 

In order to quantify the RPA correction in terms of a correction function we used the following 

procedure. The NSE data were fitted to a model function that comprises the internal Rouse 

dynamics including NG corrections (Equs. 3-4). The ratio of the computed functions as fitted 

with RPA and calculated without RPA yields the correction function for the experimental data. 

Since the application of the dynamical RPA also requires the scattering function of the long 

matrix as input, these are represented by an interpolation Ansatz (Ref. [33]) that perfectly 

describes all previously known NSE data from long chains over the complete available time 

and 𝑄-range. 

 

Scrutinizing the NG-model established by Equs. 3-7 it is unavoidable to deal with a significant 

number of parameters and therefore it is essential to use all prior information available. (i) 
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The structural and Rouse parameters are known from earlier experiments on PEO at the same 

temperature: 𝑊𝑙GH:7 = 1.489	 nm
4

ns
 37; the segment length 𝑙GH: = 0.568	nm	 36; (ii) the tube 

diameter of highly entangled PEO 𝑑'QRH = 4.75	nm	 37; (iii) tracer diffusion coefficients  for 

PEO2K, PEO3K and PEO4K at 413 K were obtained from PFG-NMR studies (Table 2 and Figs. S2 

and S3). (iv) Following Guenza-model 27 the maxima of the NG-correction appears at 𝑡?1K ≅

𝜏8  that given the Rouse parameters are at hand (Table 2); (v) finally, the strength of 𝛼!(𝑡), 𝛼* 

is expected to be independent of the tracer length – the tracers are supposed to mirror the 

dynamics of always the same host. 

 

With this knowledge a first joint fit of all spectra from the 4 tracers (altogether 12 spectra) 

was undertaken: Variables were the parameters determining 𝛼!(𝑡); thereby the strength 

parameter 𝛼* was taken as equal for all tracers; 𝑡?1K	was set proportional to the Rouse times 

with one common proportionality factor 𝑡?1K* ; the width parameter 𝜎 was also set equal for 

all tracers. As further parameter the slopes in the sub-diffusive regime 𝛽 and the cross over 

mean square displacement 〈𝑟=%>GG! 〉 were fitted. With this first approach already a very 

reasonable fit was achieved (residual sum of errors 𝜒! = 1.55) that resulted in (𝛼* = 0.214 ±

0.007;	𝑡?1K* = 2.56 ± 0.35	ns	; 	𝜎 = 2.18 ± 0.13;	〈𝑟=%>GG! 〉 = 17.5 ± 0.9	nm2) the stretching 

parameters from short to long tracers became  𝛽 = 0.79 ± 0.01, 0.74 ± 0.01, 0.72 ± 0.01,

0.65 ± 0.01. In the following steps the parameters were refined: (1) the Fickian diffusion 

coefficient at constant 𝛼* were allowed to vary, Table 2 displays the results that all are very 

close to the PFG-NMR results taken at a very different time and length scale (hundreds of ms 

and µm). Varying the Fickian-diffusion coefficients improved 𝜒!	to	1.35. Their dependence on 

the tracer length together with the NMR-results is displayed in Figure 2. (2) The dependence 

of 𝛼* on the tracer length N was investigated. The results are shown in the bottom left insert 
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of Figure 2, where 𝜒!	as a function of the exponent x in 𝛼*~𝑁K is displayed. Indeed 𝜒! 

assumes a minimum at x = 0 as expected from the Guenza model. (3) We studied, how the 𝜒! 

evolved for different prescribed values for 〈𝑟=%>GG! 〉. The result is shown as a second upper right 

insert in Figure 2. Finally, the solid lines in Figure 1 display the achieved quality of data 

description by our fitting strategy. We note that even at 𝑄=1.2 nm-1, where without the NG 

corrections the Rouse mode contribution would be very large (Figure S4), we get an excellent 

data description over the whole NSE time range. 

 

Table 2: Rouse diffusion coefficients 𝐷8; tracer diffusion coefficients within the 40K host: 
obtained by PFG-NMR, Dtr [NMR] and NSE, Dtr [NSE];	the tracer’s Rouse times 𝜏8; the times, 
tmax, where the 𝛼!(𝑡)  assume their maxima and the slopes 𝛽 in the sub-diffusive regime. 
 

Sample N DR 

10! FL?
#

LG
N 

Dtr [NMR]	
10! FL?

#

LG
N 

Dtr [NSE]	
10! FL?

#

LG
N 

𝜏8  [ns] 𝑡?1K[ns] 𝛽 

PEO1K 23 6.69 - 4.78
± 0.13 

3.75 3.15 0.79
± 0.01 

PEO2K 48 3.21 1.62±0.13 1.59
± 0.02 

16.3 13.7 0.74
± 0.008 

PE03K 71 2.16 0.78±0.06 0.74
± 0.01 

35.7 30.0 0.71
± 0.009 

PEO4K 103 1.49 0.40±0.02 0.44
± 0.008 

75.1 
 

63.2 0.68
± 0.01 

PEO4K 
(T=464K) 

103 3.36 0.98±0.05 
 

1.02
± 0.02 

33.3 27.8 
fixed 

0.60
± 0.007 
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Figure 2: Fickian diffusion coefficients 𝐷'%(𝑁) from PFG-NMR (circles) and NSE (squares) in a 
double logarithmic presentation as a function of tracer length N. Residual sum of errors 𝜒! for 
a joint fit of all spectra as a function of the power law exponent x for (i) the strength of the NG 
contribution 𝛼* ~𝑁K; (bottom left insert); (ii) for the cross over length ~〈𝑟=%>GG! 〉  (upper right 
insert). Solid line shows fit with power law 𝐷'%(𝑁)~𝑁);.6;±*.*7 
 
 

Last but not least it was an important task of our study on PEO to find out, to what extent the 

PE result of cooperative dynamics within the entanglement volume is valid also for PEO, which 

compared to PE constitutes a chemically quite different polymer featuring an oxygen in the 

backbone. In order to obtain the center-of-mass tracer ⟨𝑟=>?! (𝑡)⟩, we need to correct the 

experimental data for dynamic random phase approximation (RPA) and the contributions 

from the internal Rouse modes modified by the NG corrections. The procedure is described in 

detail in the SI. The ⟨𝑟=>?! (𝑡)⟩ then are calculated from an inversion of the normalized and 

corrected dynamic structure factor  

𝑆=>%%(𝑄, 𝑡) = 𝑒𝑥𝑝 F− @#

6
⟨𝑟=>?! (𝑡)⟩N                                                 (9) 
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   ⟨𝑟=>?! (𝑡)⟩ = − 6
@#
𝑙𝑛[𝑆=>%%(𝑄, 𝑡)]                              (10) 

 

Figure 3 displays the obtained ⟨𝑟=>?! (𝑡)⟩ for the different tracers. Like the PE tracers, the 

PEO1K, PEO2K and PEO3K chains exhibit a sub-diffusive regime at shorter times that crosses 

over to Fickian diffusion beyond a threshold ⟨𝑟=%>GG! ⟩. The dashed lines indicate the MSDNMR(t) 

calculated on the basis of the PFG-NMR data (see Table 2). As may be seen, they very nicely 

agree with the NSE derived ⟨𝑟=>?! (𝑡)⟩	beyond ⟨𝑟=%>GG! ⟩.  For the longest tracer PEO4K within the 

dynamical window of NSE the observed center-of-mass displacement remains sub-diffusive. 

Following the NMR result the cross over time would be expected at about 800 ns.  

 
Figure 3: ⟨𝑟=>?! (𝑡)⟩ for the different tracers from PEO1K (red circles), PEO2K (green triangles), 
PEO3K (magenta squares) and PEO4K (cyan stars) calculated from the NSE scattering curves 
measured for Q=0.8 nm-1 and 1.2 nm-1 at 413K. The curves for PEO3K and PEO4K are shifted 
by factors 0.6 and 0.2 respectively. For PEO2K, PEO3K and PEO4K the dashed lines indicate 
Fickian diffusion (〈𝑟=>?! (𝑡)〉	~	𝑡) as derived from the PFG-NMR results. Solid lines represent fits 
to the sub-diffusive part.  
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Figure 4: Combination of ⟨𝑟=>?! (𝑡)⟩ derived from the measurements on the PEO4K sample at 
2 different temperatures, 413K (black circle) and 464K (red circle). The abscissa represents the 
time scaled with a factor 𝑓KU = 𝐷KU 𝐷767U⁄ . The scaling factors 𝑓KU  are D464K/D464K: 1 
D413K/D464K: 0.44. The solid line shows the Fickian diffusion (〈𝑟=>?! (𝑡)〉	~	𝑡), the dashed line 
indicates the cross-over point ⟨𝑟=%>GG! ⟩ at 17.5 nm2 (for the details see the main text).   
 

In order to visualize the Fickian regime also for this tracer, we performed an additional 

experiment at T=464 K. We compare the T=464 K data with those from T=413 K, by scaling the 

time axis with the ratio of the Fickian diffusion coefficients at the two temperatures. The 

Fickian diffusion coefficient at 413K was obtained by PFG-NMR (see SI). The scaling factor fxK 

results from the known temperature dependence of the Rouse variable 𝑊𝑙GH:! , which is in 

accordance with various macroscopic measurements 35. The scaling plot displayed in Figure 4 

now also for the PEO4K sample shows the cross over from sub-diffusion to Fickian diffusion. 

 

Discussion 
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Non-Gaussianity. Non-Gaussian dynamics of segment motion means that the distribution of 

segmental displacements does not follow the Gaussian form.  Depending on the sign of 𝛼!(𝑡) 

the distribution might become broader or narrower than the corresponding Gaussian 

distribution. In general terms, for a negative 𝛼!(𝑡) the distribution in “real space” becomes 

broader than a Gaussian. Thus, some displacements are larger and others are smaller than a 

Gaussian distribution would dictate. We note that the sign of 𝛼!(𝑡) is positive for all tracers. 

Then the opposite holds: at the degree of approximation the distribution in “𝑄-space” gets 

broader, with the consequence that in real space the displacement distribution will be 

narrower than a Gaussian. Thus, in our case of a positive 𝛼!(𝑡) that goes along with the 𝑄7 

term in the scattering function, the distribution in real space narrows down. With such a 

positive 𝛼!(𝑡)–function, we are able to successfully fit the scattering data obtained from all 

tracers in a global fit. The narrower distribution function implies that larger deviations from 

the average displacements are reduced. We hypothesize that the tube confinement of the 

matrix reduces larger runaway displacements relative to the average displacement.  

 

Now we compare our results with the quantitative predictions by Guenza. On the one hand 

we observe that her finding 𝑡?1K(𝑁) ≈ 𝜏8(𝑁) is in perfect agreement with our results, even 

though, as it turns out the fit is not very sensitive to the exact exponent x in 𝑡?1K~𝑁K (see 

Figure S5). Furthermore, the fit reveals that with good accuracy the strength parameter 𝛼* is 

independent of the tracer’s length.  In order to investigate the 𝑁-dependence in more detail 

we evaluated 𝜒! for different fixed values of the power law exponent 𝑥 in 𝛼*~𝑁K . The insert 

in Figure 2 shows the result: 𝜒! exhibits an asymmetric minimum around 𝑥 = 0 . On the right 

side 𝜒!  exhibits a nearly linear increase indicating some leverage for 𝑥 > 0 . On the left side 

𝜒! increases quadratically showing that negative  𝑥 values are rather excluded. Thus, the NG-
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correction appears to be independent of 𝑥. As the cooperativity of tracer motions with the 

host shows, the tracers mirror the host dynamics within the tube. Then, given the fact, that 

the host is always the same highly entangled 40K PEO, a constant strength 𝛼* (𝑁) is expected 

from Guenza’s approach and further supports the notion of cooperative motion with the host. 

The behavior of the normalized sum of squared errors 𝜒!  on different parameter planes are 

shown in the SI (Figs. S6 and S7) 

MSD. We now inspect the experimental results on the center-of-mass displacements for the 

different tracers. Figure 5 displays the ⟨𝑟=>?! (𝑡)⟩  for the different tracer lengths in a master 

plot, where the time axis was scaled with a factor 𝑓VWXKU = 𝐷VWXKU 𝐷VWX;U⁄ . As in PE, we 

observe sub-diffusive displacements at shorter times that for all tracers cross over to a linear 

time dependence at the same ⟨𝑟=>?! (𝑡)⟩ =⟨𝑟=%>GG! ⟩ = 17.5 nm!. The position of the cross over 

is indicated by horizontal line. ~⟨𝑟=%>GG! ⟩ = 4.2	nm is very close to the entanglement distance 

or tube diameter in strongly entangled PEO melts, where by NSE  𝑑'QRH = 4.75	nm was found 

37.  The range of sub-diffusive behavior is not determined by the size of the tracer but for all 

tracers in an equal fashion given by the lateral dimension of the confining tube of the 

entangled host.  Thus, as shown and discussed for PE, also in highly entangled PEO melts the 

tracer’s monomers interact strongly with the host and move cooperatively with the host 

segments. Decorrelation is determined by the host and occurs, whenever the ⟨𝑟=>?! (𝑡)⟩ has 

reached a value close to the lateral tube size - cooperativity is limited by the entanglement 

volume. As already noted for PE, the cooperative segment motion within the entanglement 

volume contradicts the assumption of independent chain motion (Rouse dynamics) within the 

tube that is one basic element of the reptation model.  
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Figure 5: Centre-of-mass ⟨𝑟=>?! (𝑡)⟩ for the different PEO tracers with the time axis scaled 

with a factor proportional to the respective Fickian diffusion coefficients. The solid line 

shows the Fickian diffusion law 	~𝑡, the dash line indicates the cross-over point ⟨𝑟=%>GG! ⟩ at 

17.5 nm2 (for the details see the text); Black: PEO1K; red: PEO2K; blue: PEO3K; green: 

PEO4K. The scaling factors fPEOxK are DPEO2K/DPEO1K: 0.33; DPEO3K/PEO1K: 0.16; DPEO4K/DPEO1K: 

0.092.  

 

Fickian diffusion: The tracer diffusion coefficients decrease with increasing 𝑁 as 

𝐷'%(𝑁)~𝑁);.6;±*.*7 somewhat less pronounced than for similar chain lengths of PE 

(𝑁);.Y-). We note that by MD simulation on coarse grained chains for the motion of short 

dilute unentangled tracers of length 𝑁 in an entangled matrix Durand et al. 38 found the 

Rouse diffusion law 𝐷'% 	~𝑁); for the entire range of 𝑁. The observation of Fickian diffusion 

that does not follow the Rouse prediction 𝐷 = Z)[
<\
, where 𝜁 is the monomeric friction 

coefficient implies that the monomeric friction alone is not determining center-of-mass  

diffusion. This non-Rouse N-dependence for dilute tracer chains immersed in a highly 
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entangled host was already observed a long time ago by macroscopic scanning infrared 

microscopy measurements 39. As we have shown on PE tracers our results for the Fickian 

diffusion coefficient beyond the cross over from sub-diffusivity quantitatively agree with 

these macroscopic results 28. Thus, it is not surprising to find a similar result for PEO tracers. 

Since the results on the nanometer scale quantitatively agree with macroscopic studies (PE) 

and measurements on the micrometer scale (PEO), there appears to be no further 

mechanism that affects the tracer diffusion beyond the nm scale. Then, the steeper N-

dependence of the Fickian diffusion must be related to a scale dependent viscosity of the 

host matrix that differs from the Rouse-like viscosity of the tracer chains in their own 

equivalent melt. Apparently, the scale for establishing this viscosity is that of the tube. 

Finally, we note that the cross over time 𝜏=%>GG = 〈𝑟=%>GG! 〉 (6𝐷'%)⁄  is not related to the 

internal dynamics of the tracers that is characterized by the respective Rouse times 𝜏8. Both 

scale differently with the tracer length 𝜏=%>GG~
;
]*+
~𝑁;.6; and 𝜏8~𝑁!. This behavior differs 

from the dynamics of Rouse chains, where 𝜏=%>GG ≅ 𝜏8 28. 

 

Conclusion 

In conclusion, we summarize our results and emphasize their importance for future more 

fundamental approaches to rationalize the reptation idea on a molecular basis:  

¨ As in the earlier investigation on PE 28 we have found that short tracer chains in a highly 

entangled PEO matrix perform anomalous sub-diffusion that is dictated by the host 

and limited by the entanglement volume – the tracers move cooperatively with the 

host.  

¨ For all tracers the strength of the NG correction 𝛼*(𝑁) is equal. The independence of 

the NG corrections from the tracer length is another proof that the tracers mirror the 

host dynamics, which does not depend on the tracer length.    
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¨ The magnitude of the NG correction 𝛼*(𝑁)~√𝑁 proposed by Guenza is not found, 

because we observe the image of the host dynamics; for all tracers the host was the 

same.    

¨ We hypothesize that the cross over to Fickian diffusion at ⟨𝑟=%>GG! ⟩ ≅ 𝑑! indicates that 

beyond the entanglement volume not only the cooperativity is lifted but also the NG 

displacement distribution is averaged leading to the generic Gaussian distributed MSD 

valid for diffusion.  

¨ The Fickian-diffusion observed at the nm–scale agrees quantitatively with the 

macroscopic (PE) and mesoscopic diffusion (PEO). On the other hand, its dependence 

on the tracer length deviates strongly from the Rouse prediction (𝐷~ ;
<

) indicating that 

it is governed by a non-local viscosity established on the scale of the tube. 

¨ The Non-Gaussianity is also the physical reason for the observed weak Rouse 

contributions to the dynamic structure factor of tracer chains in long chain melts.  The 

effect was already observed for PE tracers in strongly entangled PE melts but so far 

remained unexplained.  

 

As a final conclusion our experiment together with the earlier observations on PE 28 clearly 

reveals that as a generic feature in highly entangled polymer melts the dynamics within the 

tube is not only cooperative but also significantly Non-Gaussian. These phenomena will need 

to be considered in developing molecular theories underpinning the reptation idea. 
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Supporting information: determination of MSD, PFG-NMR, RPA correction, residual error 

maps. 
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